

Massachusetts
Institute of
Technology

Overflow Prevention Enhances Long-Context Recurrent Models

Assaf Ben-Kish, Itamar Zimerman, Jehanzeb Mirza, James Glass, Leonid Karlinsky, Raja Giryes

Long Sequences Are All Around Us

- Short Sequences SOTA
- Long Sequences Limited due to quadratic complexity w.r.t input length

The Long-Sequence Architecture Zoo

Sub-Quadratic Recurrent Models

State-Space Models

DeltaNet

RWKV

Recurrent Gemma

•••

Transformer-Based Solutions

Flash Attention Native Sparse Attention YaRN

••

Strong Recurrent LLMs Are Starting to Appear

Model Name	ARC-25	HellaSwag-10	MMLU-5	Winogrande-5	TruthfulQA-0	GSM8K-5	Average
RWKV models							
RWKV-v6-Finch-7B*	43.86	75.19	41.69	68.27	42.19	19.64	48.47
RWKV-v6-Finch-14B*	47.44	78.86	52.33	71.27	45.45	38.06	55.57
Transformer models							
Falcon2-11B	59.73	82.91	58.37	78.30	52.56	53.83	64.28
Meta-llama-3-8B	60.24	82.23	66.70	78.45	42.93	45.19	62.62
Meta-llama-3.1-8B	58.53	82.13	66.43	74.35	44.29	47.92	62.28
Mistral-7B-v0.1	59.98	83.31	64.16	78.37	42.15	37.83	60.97
Mistral-Nemo-Base-2407 (12B)	57.94	82.82	64.43	73.72	49.14	55.27	63.89
Gemma-7B	61.09	82.20	64.56	<u>79.01</u>	44.79	50.87	63.75
Hybrid SSM-attention models							
RecurrentGemma-9b**	52.00	80.40	60.50	73.60	38.60	42.60	57.95
Zyphra/Zamba-7B-v1*	56.14	82.23	58.11	79.87	52.88	30.78	60.00
Pure SSM models							
TRI-ML/mamba-7b-rw*	51.25	80.85	33.41	71.11	32.08	4.70	45.52
FalconMamba-7B (pre-decay)*	49.23	80.25	57.27	70.88	37.28	21.83	57.29
FalconMamba-7B*	62.03	80.82	62.11	73.64	53.42	52.54	64.09
A 1 11	55.3	86.7	80	27.9	71.4	156.7	
Avg Length:	tokens	tokens	tokens	tokens	tokens	tokens	

What about long contexts?

Falcon-Mamba-Inst-7B over long-context benchmarks - HotPotQA:

- 1. Baseline Process the full context
- 2. Random Process only a random chunk from the context

Method	0-4K	4K-8K	8K+
Baseline	36.35	21.18	18.4
Random	35.53	23.02	27.62

➤ Context Length = ~10,000 Tokens; Chunk Size = 3000 Tokens

What about long contexts?

X SoTA Recurrent models have yet to close the performance gap with Transformers in long-context tasks

This is despite having "good conditions" for long-context processing:

- ✓ Match SoTA Transformers on <u>short-sequence</u> tasks
- ✓ Parameter count is large enough for in-context learning (7 Billion)
- ✓ Large hidden states
- √ Trained on long sequences (some on 32K!)

Problem Identification

Problem Investigation

Recurrent Memory Capacity

Are recurrent LLMs able to store, and later retrieve, all the relevant information in a long context?

Associative Recall (AR)

- Crucial for strong language modeling capabilities [1,2]
- Definition:

"The ability to learn and remember the relationship between unrelated items".

- Example names and professions in a story: Alice Lawyer, Bob Doctor...
- AR can be quantified via a synthetic task:

$$K_1 \ V_1 < pad > < pad > K_2 \ V_2 < pad > < pad > \cdots \ K_M \ V_M \ Q$$
?

How good are SoTA recurrent LLMs in AR?

- The recurrent memory capacity is significantly smaller than expected.
- Performance <u>degrades fast</u> as the amount of information increases beyond the model's limit.

Recurrent Memory Overflows (RMOs)

➤ Sequence length is always 1200 tokens << Training length

RMOs are a fundamental long-context limitation

Recurrent memory overflows show little correlation with sequence length. They are primarily dictated by the <u>information content</u> of the context.

Existing Solutions

Existing Solutions - Recurrent Memory Overflows

Previous works propose to:

- Increase the state's size (e.g. Mamba2, xLSTM, HGRN2, etc.)
- Manage the memory more effectively (e.g. DeltaNet)

Is this enough?

Toy Example - Expanding the State's Size

Memory Capacity (AR)

Conclusion: Static recurrent memory allocation is not robust!

- ➤ 2 layers, all models are trained to retrieve 128 key-value pairs
- ➤ Mamba state size = ssm_state_dim x channel_dim

OPRM

Overflow Prevention for Recurrent Models

Overflow Prevention for Recurrent Models (OPRM)

- OPRM:
 A training-free inference algorithm.
- Motivation "Malloc"
 Dynamically allocate recurrent memory:
 - Allocate more states as information grows.
 - Each state should not process more information than it can reliably store.

Overflow Prevention for Recurrent Models

We augment the two inference stages - Pre-fill and Decoding:

Selective Decoding

• The chunk is selected according to an entropy criterion. Given that we have b chunks X_i , $i \in [b]$, the selected chunk j is given by:

$$j = \arg\min_{i} \{E_i \mid i \in [b]\}, \quad E_i = \sum_{v \in V} Pr(v \mid X_i) \cdot \log_2 Pr(v \mid X_i)$$

Selective Decoding - IDK Filter

Problem: The entropy criterion selects the most confident chunk. However, since most chunks do not contain the answer, a good model will confidently predict that the answer is not there.

Selective Decoding - IDK Filter

Solution - simple prompting technique.

Question: Which town near the county border with North Yorkshire was this Lancashire mill (closed in 1979 and demolished) located? If the answer is unknown, respond "Error".

Chunk Size

- Constant (E.g. L=3000 tokens)
- Hyperparameter
- Robust, works well in practice, generalizes to all architectures

Overflow Prevention for Recurrent Models

Results

Synthetic Tasks - Associative Recall

OPRM practically solves AR:

Real-World Long-Context Tasks - LongBench

Falcon-Mamba-Inst-7B over long-context benchmarks - HotPotQA:

- Baseline Process the full context
- 2. Random Process only a random chunk from the context
- 3. OPRM Select best chunk

Method	0-4K	4K-8K	8K+
Baseline		21.18	
Random	35.53	23.02	27.62
Min Entropy (Ours)	39.71	37.1	35.18

➤ Context Length = ~10,000 Tokens; Chunk Size = 3000 Tokens

Real-World Long-Context Tasks - LongBench

- Single-Document QA, Multi-Document QA, Summarization, Few-Shot Learning, Synthetic Tasks, and Code Completion.
- Recurrent LLMs + OPRM:
 Average improvement of <u>35%</u> across a variety of SoTA recurrent models
- Significant improvements on <u>Multi-Hop Reasoning</u> benchmarks

Multi-Hop Reasoning

Benchmark	Method	0-4K	4K-8K	8K+	LB
HotPotQa	Baseline + OPRM	27.97 38.68	21.57 34.37	17.21 36.07	22.17 35.09
(2 hops)	Improvement		59.3%	109.7%	58.3%
MuSiQue	Baseline + OPRM	N/A N/A	N/A N/A	N/A N/A	8.37 18.4
$(\leq 4 \text{ hops})$	Improvement	N/A	N/A	N/A	119.8%
2WikiMQA (≤ 5 hops)	Baseline + OPRM Improvement	25.26 30.37 20.2%	25.33 28.88 14.0%	16.61 27.01 62.7%	21.39 25.08 17.2%

Real-World Tasks - LongBench v2 (< 1M Tokens)

Model Type	Model	#Params	LB_v2	Difficulty	Length			
	1120 402	"		Easy Hard	0-32k	32k-128k	128k+	
_	Random Chance Human	_ _	25.0 53.7	25.0 25.0 100.0 25.1	25.0 47.2	25.0 59.1	25.0 53.7	
Transformer (Large)	Llama-3.1-Inst-70B Mistral-Large-Inst-2411 Qwen-2.5-Inst-72B Qwen-2.5-Inst-72B + YaRN	70B 123B 72B 72B	31.6 34.4 39.4 42.1	32.3 31.2 38.0 32.2 43.8 36.7 42.7 41.8	41.1 41.7 44.4 45.6	27.4 30.7 34.0 38.1	24.1 29.6 41.7 44.4	
Transformer (Medium)	Llama-3.1-Inst-8B GLM-4-Chat-9B Qwen-2.5-Inst-7B Qwen-2.5-Inst-7B + YaRN	8B 9B 7B 7B	30.0 30.2 27.0 30.0	30.7 29.6 30.7 29.9 29.2 25.7 30.7 29.6	35.0 33.9 36.1 40.6	27.9 29.8 23.7 24.2	25.9 25.0 18.5 24.1	
Hybrid	RecurrentGemma-IT-9B + OPRM	9B	26.2	26.0 26.4	26.1	22.8	33.3	
Recurrent	RWKV6-Finch-7B + OPRM Falcon-Mamba-Inst-7B + OPRM Falcon3-Mamba-Inst-7B + OPRM	7B 7B 7B	22.7 29.4 30.8	16.5 16.2 30.2 28.9 34.4 28.6	18.3 27.8 29.4	27.0 31.2 32.6	21.3 28.7 29.6	

Real-World Tasks - Ultra-Long Contexts

- InfiniteBench Contexts of up to 200K tokens.
- Recurrent LLMs + OPRM:
 - Outperform same-size Transformers
 - Rival Transformers that are an order of magnitude larger

Model	Kimi-Chat	Claude2	GPT4	Mistral-YaRN	Falcon3-Mamba	Falcon3-Mamba + OPRM
Model Type # Params	Transformer >70B	Transformer >70B	Transformer >70B	Transformer 7B	Recurrent 7B	Recurrent 7B
Ret.PassKey	98.1	97.8	100.0	92.7	0.0	99.8
Ret.Number	95.4	98.1	100.0	56.6	0.0	100.0
Ret.KV	53.6	65.4	89.0	0.0	0.0	31.3
En.Sum	17.9	14.5	14.7	9.1	20.1	22.08
En.QA	16.5	12.0	22.2	9.6	11.0	23.2
En.MC	72.5	62.9	67.3	28.0	45.4	59.4
En.Dia	11.5	46.5	8.5	7.5	4.0	8.0
Code.Dbg	18.0	2.3	39.6	0.8	27.1 0.0	24.56
Code.Run	2.0	2.5	23.3	1.3		0.0
Math.Calc	0.0	0.0	0.0	0.0	0.0	0.0
Math.Find	12.6	32.3	60.0	17.1	26.86	33.14
Avg	36.2	39.5	47.7	20.2	12.2	36.5

Efficiency

OPRM is **faster** than vanilla inference, with **negligible** memory overhead.

	Model	Context Length							
	11100001	2K	4k	8K	16K	32K	64K	128K	
Time [s]	Falcon3-Mamba-Inst-7B + OPRM	2.2	2.5	3.2	4.7	7.8	14.0	26.9	
	Falcon3-Mamba-Inst-7B	2.0	2.5	3.5	5.7	10.2	18.9	36.2	
Space [GB]	Falcon3-Mamba-Inst-7B + OPRM	15.3	15.6	16.3	17.8	20.6	26.2	37.3	
	Falcon3-Mamba-Inst-7B	14.9	15.3	15.9	17.2	19.9	25.2	35.7	

Increase of 4.4% at the most extreme case

Explanation:

Speculative pre-fill allows <u>parallelization</u> in the sequence axis. GPU memory used by a recurrent state is just <u>1/1000</u> of the model size.

Context Extension

- Overflow prevention methods naturally extend the context lengths that models can handle.
- OPRM is better than dedicated methods at context extension!

Explanation:

overflow prevention → context extension context extension ★ overflow prevention

LongBench

Method	SD-QA	MD-QA	Summ	Few-Shot	Syn	Code	Avg
Mamba-1.4b	5.94	5.92	7.80	12.56	3.00	12.92	9.35
DeciMamba-1.4b	6.42	6.19	9.78	17.54	3.12	35.17	15.25
LongMamba-1.4b	6.76	7.57	10.34	28.21	2.88	42.78	17.33
Mamba-1.4b + OPRM	11.36	8.92	20.22		2.60	43.25	21.22

<u>Training Length = 2K tokens</u>

Needle-In-A-Haystack

Comparison to RAG

- Long-context vs. RAG remains a persistent debate.
- Recurrent LLMs + OPRM strengthen the case for long-context modeling:

Document QA Benchmarks - LongBench_e

Method	0-4K	4K-8K	8K+	Avg	_
Falcon-Mamba-Inst-7B	34.21	26.94	19.11	26.75	
+ Dragon	35.85	30.05	32.74	32.88	RAG (External Retriever)
+ PRP	36.27	32.52	34.61	34.47	RAG (LLM Retriever - Slow)
+ OPRM	37.41	34.49	36.25	36.05	

Possible explanation: "Multi-Hop Recall" [1]

Limitations

Limitations

- OPRM does not perform cross-chunk information aggregation.
- OPRM is training-free it relies on the base-model's abilities.
 E.g. IDK filter can be improved if explicitly trained on.

Recap

Recap

- Recurrent memory overflows fundamentally limit long-context performance of recurrent LLMs.
- Existing solutions compress the whole context into a fixed-size state - don't fully prevent RMOs.
- OPRM prevents RMOs by dynamically allocating more recurrent memory.
- OPRM is general, effective and efficient:
 - Boosts long-context performance
 - o Runs faster than vanilla inference
 - Enables significant length generalization
 - Training-free, architecture-agnostic

Thank You!

